دانلود کتاب Particle Swarm Optimization

ارسال شده در ۲۵ اسفند ۱۳۹۴ / دسته بندی: کامپیوتر / بدون دیدگاه


روش PSO یا به لاتین (Particle swarm optimization) یک روش سراسری کمینه‌سازی است که با استفاده از آن می‌توان با مسائلی که جواب آنها یک نقطه یا سطح در فضای n بعدی می‌باشد، برخورد نمود. در اینچنین فضایی، فرضیاتی مطرح می‌شود و یک سرعت ابتدایی به آنها اختصاص داده می‌شود، همچنین کانال‌های ارتباطی بین ذرات درنظر گرفته می‌شود. سپس این ذرات در فضای پاسخ حرکت می‌کنند، و نتایج حاصله بر مبنای یک «ملاک شایستگی» پس از هر بازه‌ٔ زمانی محاسبه می‌شود. با گذشت زمان، ذرات به سمت ذراتی که دارای ملاک شایستگی بالاتری هستند و در گروه ارتباطی یکسانی قرار دارند، شتاب می‌گیرند. علی‌رغم اینکه هر روش در محدوده ای از مسائل به خوبی کار می کند، این روش در حل مسائل بهینه سازی پیوسته موفقیت بسیاری از خود نشان داده است.

دانلود کتاب Particle Swarm Optimization

دانلود کتاب Particle Swarm Optimization

دانلود کتاب Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles.

Each particle keeps track of its coordinates in the problem space which are associated with the best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. Another “best” value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the neighbors of the particle. This location is called lbest. when a particle takes all the population as its topological neighbors, the best value is a global best and is called gbest. The particle swarm optimization concept consists of, at each time step, changing the velocity of (accelerating) each particle toward its pbest and lbest locations (local version of PSO). Acceleration is weighted by a random term, with separate random numbers being generated for acceleration toward pbest and lbest locations

In past several years, PSO has been successfully applied in many research and application areas. It is demonstrated that PSO gets better results in a faster, cheaper way compared with other methods. Another reason that PSO is attractive is that there are few parameters to adjust. One version, with slight variations, works well in a wide variety of applications. Particle swarm optimization has been used for approaches that can be used across a wide range of applications, as well as for specific applications focused on a specific requirement

Particle Swarm Optimization
Particle Swarm Optimization
Particle Swarm Optimization.rar
10.9 MiB
98 Downloads
اطلاعات بیشتر

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Time limit is exhausted. Please reload CAPTCHA.